Technical Manual LIMS ID = Sctaffash 3 # Rapid Tester® Model RT-1 Operation and Service Type: RT-00001-600 Serial: 113124 ## Warning Flash point testers aid in determining the temperature at which application of a test flame causes the vapors of a sample to ignite under specified conditions of test. Flammable and potentially explosive materials are involved in the presence of a source of ignition. It is the direct responsibility of the user to establish appropriate safety and health practices for all personnel. The test procedures contained in this manual are for reference purposes only. The user of the Rapid Tester® is to follow the instructions, warnings, and the cautions contained in the industry test methods. Under no circumstances should this product be used except by qualified, trained personnel and not until the instructions, labels or other literature accompanying it have been carefully read and understood and all precautions followed as set forth therein. # Contents | Section 1 | General Information | 1 | |-------------|---|----------------------------------| | | Description of tester physical and operational functions Perspective drawing | 1
3 | | Section 2 | ction 2 Preparation for Use | | | | Assembly | 4 | | Section 3 | Operation — Flash Point Determination | 6 | | | Instructions for determination of an unknown flash point | 6 | | Section 4 | Operation — Flash / No Flash Test | 8 | | <i>\</i> - | Instructions for verification of a flash point above or below a
specified minimum temperature. (Use this method for quality
assurance and compliance testing.) | 8 | | Section 5 | ection 5 Maintenance Guide | | | | Maintenance suggestions | 10 | | Section 6 | Appendix | 11 | | St. | Flash Point Check Fluids Barometric Pressure Correction Preparation of Dry Ice / Acetone Slurry Dilution Determination Procedure Parts List Sample Scale Assembly Drawing, Perspective View | 11
12
12
13
15
16 | | Warranty an | d Service Information | 18 | ## General Information #### Introduction The Rapid Tester is specifically designed for ascertaining the flash point of a volatile material or whether the flash point temperature of a material is within established limits (Flash / No Flash Procedure). Instruments utilize equilibrium, closed cup technology. Test cup and lid and shutter are dimensionally in accord with ASTM, IP, ISO and BSI requirements as delineated in their standards: ASTM: American Society for Testing and Materials Test Methods: D 3243; D 3278; D 3828 IP: Institute or Petroleum Test Method: IP 303 ISO: International Organization for Standardization Test Methods: ISO 3679; ISO 3680 BSI: British Standards Institute Test Methods: BS 3900 Part A11; BS 3900 Part A13; BS 3900 Part A14 Accepted by: CPSC: United States Consumer Products Safety Commission DOT: United States Department of Transportation United States Environmental Protection Agency EPA: NFPA: National Fire Protection Association OSHA: United States Occupational Safety and Health Administration #### **Instrument Characteristics** Flash Point Temperature Range: -36* to 572°F -30* to 300°C * For below ambient testing, use Refrigerant Charged Cooling Block RT-05505 Temperature Display: Digital °F/°C LCD display and mercury-in-glass thermometer dual scale 30 to 600°F and 0 to 316°C. Refer to Parts List in Appendix for thermometers with different ranges and resolutions. Electrical Power: 98-132v, 50/60 Hz 196-264v or 50/60 Hz Cup Type: Closed, equilibrium test Operational Sample Size: 2 ml to 212°F (100°C) 4 ml above 212 to 572°F (100 to 300°C) Repeatability: In accordance with Industry Test Method Reporductability: In accordance with Industry Test Method Physical Dimensions: 15.0 x 3.4 x 5.3 inches (38.1 x 8.64 x 16.25 cm) Net Weight: 10 lbs (4.6 Kg) ## **Electrical Circuitry** The primary voltage of 115/230v, 50/60 Hz is regulated to provide instrument control which is virtually constant. Each instrument is internally connected for user's nominal voltage of 115 or 230v prior to shipment. Its voltage connection is stated below the primary power inlet. ## Sample Size The sample size for testing at 212°F (100°C) and lower is 2 ml. Above 212°F (100°C), the sample size is 4 ml. ## **Syringe** An adjustable syringe is standard. It includes a holder with adhesive backing to allow mounting on, for example, a laboratory bench or onto the Rapid Tester enclosure above the digital display. Spacers are provided to simplify 2 ml or 4 ml sampling. Materials of higher viscosity such as adhesives, a 2 or 4 ml by volume sample is placed directly into the cup by use of a spatula (user supplied). ## O-ring / Gasket The seal between the cup and lid & shutter as shipped is silicone for testing to 400°F (204°C) — RT-05025. A separate gasket is also supplied for testing from 400 to 572°F (204 to 300°C) — RT-14983. ## **Temperature Displays** The Model RT-1 covers the temperature range of -36 to 572°F (-38 to 300°C). The refrigerant charged cooling block, RT-05505 is required for below ambient testing. The standard dual scale thermometer, RT-14980 reads to low temperatures of 32°F and 0°C. For lower temperatures, the RT-05536 (-36 to 105°F) or RT-05537 (-38 to 40°C) thermometers will be needed. The thermometers are traceable for accuracy to the U.S. National Institute of Standards and Technology. The digital temperature indicator compliments the thermometers and a simple switch action changes the reading to either °C or °F. Its range is ambient to 572°F (300°C). The digital temperature indicator provides instantaneous readings as compared to a mercury-in-glass thermometer which gives an average indication at the instance of reading. Therefore the slight fluctuation is a reminder of instant and actual temperature portrayal and the need to record the average or the digit between the high and low. If the average digital temperature display differs by more than 2°F or 1°C from the thermometer reading, it may be desirable to cause the Rapid Tester to heat within the range of your normal temperature usage, from low to high temperature. Record the thermometer readings and simultaneously the digital display every 20°F or 10°C to provide data points for a graph depicting any variation. This graph can then be referred to when recording the digital display and correcting to the thermometer. Set-a-temp control permits simple adjustment and automatic regulation of test temperatures higher than ambient. Press the Preset switch while turning the temperature control knob until the target temperature is displayed. Release the switch and set-a-temp takes over. The test cup is automatically heated until the target temperature is attained. The instrument automatically maintains the target temperature. Slight movement of the temperature control knob may be necessary to obtain a specific target temperature. #### **Test Cup** Instrument utilizes closed cup type equilibrium test technology. Dimensions of test cup and lid and shutter assembly meet the exact dimensional requirements of applicable domestic and international standards which are: ASTM D 3243, D 3278 and D 3828 IP 303 ISO 3679 and 3680 BS 3900 Parts A11, A14 The standard cup is aluminum. An optional cup with its companion lid and shutter of 316 stainless steel material is available for higher corrosion resistance. The test cup is insulated with 1 inch (2.54 cm) surrounding sides and 1.5 inch (3.81 cm) at its bottom of low thermal conductivity ceramic. When the test cup is at 200°F (93°C), the cold face temperature of the ceramic is 100°F (38°C). This attention to restricting heat flow achieves a higher degree of repeatable flash points than feasible in prior designs. Heating rates for the aluminum cup and/or 316 stainless steel cup are on the order of 7 minutes from ambient, 68°F/20°C to 212°F/100°C. #### **Timer** An electronic timer includes switching for either 1 or 2 minutes and an associated red LED. The light glows red when the timer is actuated and is switched off when the period elapses and a signal is emitted. ## **Cooling Block** The Metal Cooling Block, RT-05500 is primarily used to help lower the cup temperature quickly to prepare for the next test. One or more may be stored in a refrigerator for this purpose. For some testing at elevated temperatures, it may require one or more applications to cause required cooling. ## Refrigerant Charged Cooling Block (optional) This accessory is a thermally insulated cylinder with an aluminum alloy base (for thermal transfer) which fits the test cup recess. It includes a top and bottom cover. For test temperature above 40°F/5°C, the cylinder may be charged with a dry ice/acetone slurry. Refer to Appendix for directions to prepare dry ice/acetone slurry. CAUTION: Safety glasses and gloves should be used when preparing acetone/dry ice mixtures. Dry ice can cause painful burns if allowed to contact bare skin. Serious injury will result if this is allowed to splash into eyes. ## Repeatability and Reproducibility As the test cup with its lid and shutter assembly are in accord with dimensions required by applicable standards, the repeatability and reproducibility are also in accord with the respective standards. # Preparation for Use ## Unpacking Carefully unpack, account for and inspect the Rapid Tester, thermometer, fuel supply, syringe, cord and plug and optional accessories if ordered. Inspect each item for possible shipping damage. Be careful not to discard any components that may be enclosed in packing material. ## **Assembly** Place instrument on a level bench top in a draft free area. Remove the two screws from the thermometer hold down bracket (RT-14876). Remove the wood dowel thermometer substitute if provided. Remove the thermometer (RT-14980) from its shipping tube and inspect. If the mercury column is separated, the thermometer must be cooled and the mercury shaken down into the bulb. Each instrument is supplied with a small package of Heat Transfer Compound. Apply the compound to the bulb of the thermometer so that full contact will be made with the walls of its well when inserted into the cup. Insert the thermometer carefully into the test cup. Rotate the thermometer to position the scale for convenient reading of degrees Fahrenheit or Celsius. Position the thermometer so that its end which is the high temperature reading will be fully under the clip. Replace the screws. To avoid breaking the thermometer, do not tighten the screws to cause more than a soft contact of the clip on the glass. The primary power cord has an internationally uniform plug for connection to the instrument. The plug which mates with the U.S. standard, 115v grounded receptacle is standard. For 230v service or export, the cord does not contain a plug. Its three conductors are stripped of insulation and ready for termination in user supplied plug. The record contains three No. 18 AWG conductors. When attaching the plug, be sure to connect the green, ground conductor. The instrument circuitry is internally grounded to its enclosure and integral power cord receptacle. Check that the instrument primary power switch is in the OFF (switch depressed to "O") position. Verify that the voltage stated on the label below the pirmary power receptacle is the same as your pirmary power source. Connect the power cord to the instrument and then to your power supply receptacle. If testing is at temperatures above 400°F (204°C), remove the silicone test cup o-ring seal. Be sure that the groove is clean. Then place gasket (RT-14983) partially into groove. Lower lid of lid and shutter to slowly press gasket into groove. Fasten lid with locking handle. The gasket will withstand the higher temperature but is not as resilient and therefore the silicone 0-ring is recommended for testing below 400°F (204°C). Engage the threads of the fuel supply valve assembly (RT-14986) to the fuel tank (RT-14987). Be sure that threads are fully engaged to prevent leakage of butane. Place fuel tank in its instrument well. Press the clear tubing onto the fuel supply valve and onto the fuel inlet of the lid and shutter assembly (RT-14880). Turn the red knob of the fuel tank clockwise until the container valve is closed. The shaft actuated by turning the red knob, first opens the container valve and then closes it. Then turn the red knob counterclockwise one (1) full turn. This will open the container valve. Light the pilot on the lid and shutter assembly. Turning the red knob of the fuel tank clockwise will cause reduction in flame extension. Adjustment of the pinch valve over the clear plastic tubing will cause the test flame to become the same size as the 0.157 inch (4mm) diameter gauge circle on the lid of the lid and shutter assembly. Turn off fuel supply by turning the red knob of the fuel tank clockwise. WARNING: Fuel tank includes butane, use with care to avoid accidental fires. Do not puncture or incinerate. Exposure to temperatures above 120°F (49°C) may cause bursting. Be sure Rapid Tester is fully assembled when in use. Internal barrier insulation reduces ambient temperature for fuel tank. Press primary power switch to "I" (ON). Adjust temperature control knob while depressing Preset and turn temperature control knob to cause digital readout to be at approximately 149°F (65°C). Release the Preset switch. The digital readout and the mercury-in-glass thermometer will indicate rising cup temperature. Turn the temperature control knob counterclockwise and switch instrument primary power switch to "O" OFF. # Operation - Flash Point Determination ## Ambient to 572°F (300°C) Testing Inspect sample well and lid/shutter for cleanliness and freedom from contamination. Switch instrument to "I" (ON). Adjust temperature control knob while depressing Preset switch until digital meter reads a temperature that is at least 9°F (5°C) below expected flash point temperature. When the digital display reaches the Preset temperature, the red light will extinguish. It may be necessary to make a slight adjustment using the temperature control knob. The red light will glow whenever the instrument is heating the cup to maintain the specified temperature. Be sure that the syringe is clean and dry. Draw 2 ml of sample [test temperatures of 212°F (100°C) or less] or 4 ml [test temperatures of 212°F (100°C) or higher] after target temperature is reached and discharge into the sample well. Open the gas control valve and light pilot/test flame. Turn the gas control valve clockwise to reduce the pilot flame. The pilot flame is to be a minimum size to automatically relight test flame. Adjust test flame size with the pinch valve to match the 0.157 inch (4mm) diameter gauge ring on the lid and shutter. Set timer by pressing its switch to "1 min" [test temperatures of 212°F (100°C) or less] and "2 min" [test temperatures of 212°F (100°C) or higher]. When the time has elapsed, slowly and uniformly open and close the slide completely over a period of 2½ seconds while watching for a flash. The material has flashed if a comparatively large flame appears and propagates over the surface of the liquid. Sporadically, when near the actual flash point temperature, application of the test flame may give rise to a blue halo (circular band); this should be ignored. Close gas control valve after each test. Record barometric pressure. Report FLASH or NO FLASH. Once the test flame has been applied to the sample, the test is terminated and a fresh sample must be used for each successive test. To prepare for the next test, unlock the lid and shutter. Soak up the sample using paper tissues and thoroughly clean the lid and shutter assembly. The filling orifice should be cleaned with a pipe cleaner or similar device. Do not lubricate the shutter slide. Clean the syringe. If No Flash has been observed, at the initial estimated flash point temperature, repeat the test at a 9°F (5°C) higher temperature. Again, if No Flash is observed, repeat the test at additional 9°F (5°C) higher intervals until a Flash is observed. If a Flash was observed during the initial test, use a test temperature 9°F (5°C) lower and repeat the procedure. If a Flash is again observed, repeat at 9°F (5°C) lower intervals until No Flash is observed. Having established a Flash within two temperatures 9°F (5°C) apart, repeat either procedure at 2°F (1°C) intervals from the lower of the two temperatures until a Flash is observed. Record the temperature of the test when the Flash occurs as the Actual Flash Point. Close gas control valve after each test. Record the barometric pressure. This Flash Point will be to the nearest 2°F. If closer accuracy is needed, further testing at a 1°F (0.5°C) lower temperature is required. ## **Sub-Ambient Testing** When the tests are to be made at temperatures lower than ambient, it is necessary to use the sub-ambient thermometer RT-05536 or RT-05537. This substitution should be carried out in accordance with Section 2 - Assembly. When the sub-ambient thermometer is installed, care must be taken not to exceed +105°F (+40°C). Lower test cup temperature by use of the Refrigerant Charged Cooling Block, RT-05505. For flash point temperatures above 40°F (5°C), the cylinder may be charged with a dry ice/acetone slurry. Refer to Appendix for directions to prepare dry ice/acetone slurry. Cool the sample and syringe in a cooling medium to a temperature approximately 10 to 20°F (5 to 10°C) below the estimated flash point temperature. Remove the cooling source and dry the test cup. Close the lid and shutter assembly. Ensure that the syringe is clean and dry. Charge with 2 ml of sample. Introduce the sample using the syringe, both of which have been pre-cooled to a temperature of 10 to 20°F (5 to 10°C) below the target temperature. Do not switch on the timer! Open the gas control valve and light pilot/test flame. Turn the gas control valve clockwise to reduce the pilot flame. The pilot flame is to be at a minimum size to automatically relight the test flame. Adjust test flame size with the pinch valve to match the 0.157 inch (4mm) diameter gauge ring. Allow the cup temperature to rise under ambient conditions. When the specified temperature is reached, slowly and uniformly open and close the slide completely over a period of 2½ seconds while watching for a flash. The material has flashed if a comparatively large blue flame appears and propagates over the surface of the liquid. Sporadically, when near the actual flash point temperature, application of the test flame may give rise to a blue halo (circular band); this should be ignored. Close gas control valve after each test. Record barometric pressure. Report FLASH or NO FLASH. Once a test flame has been applied to the sample, the test is terminated and a fresh sample must be used for each successive test. To prepare for the next test, unlock the lid and shutter. Soak up the sample using paper tissues and clean the lid and shutter assembly. The filling orifice should be cleaned with a pipe cleaner or similar device. Do not lubricate the shutter slide. Clean the syringe. If No Flash has been observed at the initial estimated flash point temperature, repeat the test at a 9°F (5°C) higher temperature. Again if No Flash is observed, repeat the test at additional 9°F (5°C) higher intervals until a Flash is observed. If a Flash was observed at the initial estimated flash point temperature, use a test temperature 9°F (5°C) lower and repeat the procedure. If a Flash is again observed, repeat at additional 9°F (5°C) lower intervals until No Flash is observed. Having established a Flash within two temperatures 9°F (5°C) apart, repeat either procedure at 2°F (1°C) intervals from the lower of the two temperatures until a Flash is observed. Record the temperature of the test when the Flash occurs as the Actual Flash Point. Close gas control valve after each test. Record the barometric pressure. This Flash Point will be to the nearest 2°F. If closer accuracy is needed, further testing at a 1°F (0.5°C) lower temperature is required. # Operation - Flash / No Flash Test ## Ambient to 572°F (300°C) Testing Inspect sample well and lid/shutter for cleanliness and freedom from contamination. Switch instrument to "I" (ON). Adjust temperature control knob while depressing Preset switch until digital meter reads required temperature. Release Preset switch. When the digital display reaches the Preset temperature, the red light will extinguish. It may be necessary to make a slight adjustment using the temperature control knob. The red light will glow whenever the instrument is heating the cup to maintain the specified temperature. Be sure that the syringe is clean and dry. Draw 2 ml of sample [test temperatures of 212°F (100°C) or less] or 4 ml·[test temperatures of higher than 212°F (100°C)], transfer to the filling orifice after target temperature is reached and discharge into the sample well. Set timer by pressing its switch to "1 min" [test temperatures of 212°F (100°C) or less] and "2 min" [test temperatures of 212°F (100°C) or higher]. Open gas control valve and light pilot/test flame. Turn the gas control valve clockwise to reduce the pilot flame. The pilot flame is to be at minimum size to automatically relight test flame. Adjust the test flame size with the pinch valve to match the 0.157 inch (4mm) diameter gauge ring on the lid of the lid and shutter. When the time has elapsed, slowly and uniformly open and close the slide completely over a period of 2½ seconds while watching for a flash. The material has flashed if a comparatively large flame appears and propagates over the surface of the liquid. Sporadically, when near the actual flash point temperature, application of the test flame may give rise to a blue halo (circular band); this should be ignored. Close gas control valve after each test. Record barometric pressure. Report FLASH or NO FLASH. Once a test flame has been applied to the sample, the test is terminated and a fresh sample must be used for each successive test. To prepare for the next test, unlock the lid and shutter. Soak up the sample using paper tissues and clean the lid and shutter assembly. The filling orifice should be cleaned with a pipe cleaner or similar device. Do not lubricate the shutter slide. Clean the syringe. #### **Sub-Ambient Testing** When tests are to be made at temperatures lower than ambient, it is necessary to use the sub-ambient thermometer RT-05536 or RT-05537. This substitution should be carried out in accordance with Section 2 - Assembly. When the sub-ambient thermometer is installed, care must be taken not to exceed +105°F (+40°C). Lower test cup temperature by use of the Refrigerant Charged Cooling Block, RT-05505. For flash point temperatures above 40°F (5°C), a mixture of water and crushed ice placed in the cylinder may be suitable. For temperatures below 40°F (5°C), the cylinder may be charged with a dry ice/acetone slurry. Refer to Appendix for directions to prepare dry ice/acetone slurry. Cool the sample and syringe in a cooling medium to a temperature approximately 10 to 20°F (5 to 10°C) below the specified temperature. Cool the test cup until the temperature declines to approximately 10 to 20°F (5 to 10°C) below the specified temperature. Remove the cooling source and dry the test cup. Close the lid and shutter assembly. Ensure that the syringe is clean and dry. Charge with 2ml of sample. Introduce the sample using the syringe, both of which have been pre-cooled to a temperature 10 to 20°F (5 to 10°C) below the target temperature. Do not switch on the timer! Open the gas control valve and light pilot/test flame. Turn the gas control valve to reduce the pilot flame. The pilot flame is to be at minimum size to automatically relight test flame. Adjust test flame size with the pinch valve to match the 0.157 inch (4mm) diameter gauge ring. Allow the cup temperature to rise under ambient conditions. When the specified temperature is reached, slowly and uniformly open and close the slide completely over a period of 2½ seconds while watching for a flash. The material has flashed if a comparatively large flame appears and propagates over the surface of the liquid. Sporadically, when near the actual flash point temperature, application of the test flame may give rise to a blue halo (circular band); this should be ignored. Close gas control valve after each test. Record barometric pressure. Report FLASH or NO FLASH. Once a test flame has been applied to the sample, the test is terminated and fresh sample must be used for each successive test. To prepare for the next test, unlock the lid and shutter assembly. The filling orifice should be cleaned with a pipe cleaner or similar device. Do not lubricate the shutter slide. Clean the syringe. ## Maintenance Guide ## **Symptom** ## Comment Test cup fails to heat. Check electrical supply and power cord. Be sure power switch is "O" (OFF). Disconnect power cord. Use ¼ inch (0.64cm) wide screw driver blade and turn fuse holder cover counterclockwise. Test fuse. Replace if necessary, install and replace fuse cover. Reconnect power cord. Check temperature control potentiometer. Disconnect primary power cord. Remove thermometer by disengaging the two screws on the thermometer hold down bracket. Remove and place thermometer where it will not be damaged. Remove four screws, two front and two at back which hold top cover to base of instrument. Remove top cover carefully and invert onto soft material to cushion switches, etc. Remove the three conductors from the electronic circuit board terminal strip. Test potentiometer. It is rated 2K ohms, 10 turns. Replace as necessary. Check condition of the following by sequentially removing their conductors from the electronic circuit board terminal strip and replacing the conductors after test component is found to be operational: Separately the two cartridge heaters, each is rated 115 volts, 50 watts. Primary conductors from transformer. Check for continuity of the two primary windings. Conductors from primary power receptacle. Check for continuity between conductors and blades in receptacle. Temperature control does not regulate. If electronic circuit board is potential cause, replace it. Identify and remove all conductors not from circuit board. Remove the four hold down screws. Pry board gently to cause switch retainers to release. When installing a circuit board be sure that the four switches and five LEDs are oriented to be inserted into the switch bezels and LED cups. Replace screws and conductors. If the thermocouple is suspect, replace by: Disconnect the thermocouple leads and cartridge heater leads from the circuit board terminals. Release the conductors from retaining devices. Remove the nuts from the two studs at the bottom of the white ceramic thermal insulator. Remove the ceramic insulator and protect the conductors as they slip through their outlet. Disengage the set screw in the base of the test cup. The thermocouple can be drawn from the test cup. Reverse when installing a replacement. If either cartridge heater requires replacement, a similar procedure is required. The two set screws in the bottom of the test cup each retain a cartridge heater. Disengage the threads of a set screw releases the inoperative heater. Draw out and replace the heater. Engage the threads of the set screw until it holds the cartridge heater in place. Do not over tighten as the heater jacket could be pierced. Re-assemble. # Appendix #### A. Calibration of Rapid Tester - 1. Determine the flash point of the check or reference standard that has a flash point temperature that is near your target temperature by following the direction in Section 3. When the instrument is operating properly, the flash point temperature for that check fluid will be obtained within the tolerances stated. If the flash point obtained is not within the tolerance stated, refer to Section 5. - 2. Typical specifications for flashpoint check or reference standards. Refer to the reference standard supplier certification for the batch you are using. #### n-Decane Specific Gravity: 60/60°F (15.5/15/6°C), 0.73 nominal **Boiling Point:** 345.38°F (174.1°C) Melting Point: 21.46°F (-29.7°C) minimum Flash Point: $115 \pm 1^{\circ}F$ (46.1 ± 0.5°C) acceptable range n-Undecane Specific Gravity: 60/60°F (15.5/15/6°C), 0.74 nominal **Boiling Point:** 386.15°F (196.75°C) Melting Point: -14.8°F (-25.6°C) Flash Point: $140 \pm 2^{\circ}F (60 \pm 1.0^{\circ}C)$ n-Tetradecane Specific Gravity: 60/60°F (15.5/15/6°C), 0.7628 nominal **Boiling Point:** 488.6°F (253.7°C) Melting Point: 42.6°F (5.9°C) Flash Point: $211 \pm 2^{\circ}F (99 \pm 1.0^{\circ}C)$ n-Hexadecane Specific Gravity: 60/60°F (15.5/15/6°C), 0.77 **Boiling Point:** 548.6°F (287°C) Melting Point: 64.4°F (18°C) Flash Point: $275 \pm 2^{\circ}F (135 \pm 1.0^{\circ}C)$ ## **B.** Barometric Pressure Correction When the barometric pressure differs from 760 mm Hg (101.2 kPa), calculate the flash point temperature by means of the following equations: ``` Calculated flash point = F + 0.06 (760 - P) = C + 0.03 (760 - P) Where: F,C = observed flash point, °F (or °C) and P = barometric pressure, mm Hg. ``` Determine the corrected specification flash point by the following equation: ``` F = S - 0.06 (760 - P) C = S - 0.03 (760 - P) ``` ## C. Preparation of Dry Ice / Acetone Slurry Solid carbon dioxide in equilibrium with carbon dioxide vapor at one atmosphere will provide cooling to a temperature as low as -78°C / 109.3°F. The liquid acetone provides good thermal contact throughout the bath. It also prevents air from diluting the carbon dioxide gas at the surface of the dry ice. The test cup must not be cooled to a temperature below 038.4°C, the freezing point of mercury. Extinguish the pilot and test flames. Remove the top cover of the refrigerant charged cooling block and fill the cylinder one-quarter to one-half full with acetone. DO NOT FILL TO HIGHER LEVEL. Pulverize some dry ice with a grinder or by wrapping chunks of dry ice in a towel and crushing them with a mallet. CAUTION: Use tongs or insulated gloves when handling dry ice. Add small quantities of pulverized dry ice to the cylinder with a spatula. This dry ice will evaporate almost immediately and cause considerable foaming at the surface. Add additional, small amounts of pulverized dry ice, waiting after each addition until the foaming subsides. Eventually, some dry ice will begin to accumulate at the bottom of the cylinder. At this point, small chunks of dry ice can be added without causing serious foaming. Stir the mixture to ensure temperature uniformity. There should be a slow but steady stream of carbon dioxide bubbles rising from the bottom of the refrigerant charged cooling block. Replace the top cap to prevent excess venting of acetone vapor. Remove the bottom cap just before inserting the cooling block into the test cup. ## D. Method for Determining Dilution of a Flammable Liquid by Another Flammable Liquid NOTE: This procedure utilizes an example of engine lubricant dilution by fuel to portray method. #### INFORMATION This is a suggested procedure for determination of volatile, flammable liquid dilution or contamination of turbine or reciprocating engine lubricants. Slight dilution of lubricants with fuel can reduce the lubricity of the lubricant and dangerously lower its flash point. This may result in a fire and/or loss of an engine. Dilution / Time characteristics may identify degree of engine component wear. #### **APPARATUS and MATERIALS Required** ERDCO Rapid Tester, Closed Cup Model Refrigerant Charged Cooling Block Barometer Burette Type II Style 1, Class B - Fed. Spec. NNN-B 789-50 ml. Pipet Type I, Class B - Fed. Spec. NNN-P-350-10 ml. Bottles, 2 oz., glass, wide mouth Fuels, standard, as required Lubricants, standard, as required n-Decane, n-Undecane, n-Tetradecane and n-Hexadecane or other verification standards, as required, for checking the ERDCO Rapid Tester Cooling Mixture of ice water or dry ice (solid CO₂) and acetone Heat Transfer Paste #### Sampling Obtain at least 100 ml samples from the bulk source and store in nearly full, tightly closed clean glass containers or in other containers suitable for the types of liquid being sampled. Erroneously high flash points may be obtained if precautions are not taken to avoid loss of volatile material. Do not open sample containers unnecessarily and do not transfer the sample to the cup unless its temperature is at least 20°F (10°C) below the expected flash point. Samples from leaky containers should not be used. #### Procedure Using a fresh sample of the lubricant being tested, measure into 2 oz. bottles, 49.7 ml, 49.5 ml, , 47.5 ml and 45.0 ml of the standard lubricant respectively. Then pipet into each bottle sufficient amount of the standard fuel under test to equal 50 ml, resulting in lubricants with volume concentration of 0.6%, 1.0%, 2.0%, 5.0% and 10.0% contaminants. NOTE: When residual fuel such as residual JP-4 is to be determined in lubricants, the fuel should be dis tilled off below 275°F and discarded (about 55%). Use the remainder (about 45%) in preparation of the calibration samples. Other temperatures may be selected as agreed upon. Determine the flash point of each mixture according to the procedure (Section 3). Shake each test sample bottle for thorough mixing before extracting a test specimen. When barometric pressure differs from 760 mm (101.2 kPa), calculate the flash point temperature by means of the equation in this Appendix. Construct a graph plotting the percent contaminant as the abscissa and the flash point temperature as the ordinate (See Appendix for typical curve). ## **Application** After determining the flash point temperature of a lubricant sample which may be diluted with a volatile, flammable liquid such as a fuel, refer to the graph. At the point where the temperature intersects the curve, the percent dilution if any, can be determined by locating the corresponding number of abscissa. This information will assist an investigation as to the source of the contamination. If there is a percent of dilution that is acceptable, use the graph to determine the correlating temperature. Then <u>use</u> the Flash / No Flash procedures in Section 4 to rapidly determine acceptable lubricant. By knowing the minimum flash point temperature of acceptable lubricant, using the Flash / No Flash procedure in Section 4, acceptable quality can be determined for lubricants that may be diluted by other volatile, flammable material. #### Conclusion This procedure is provided as a guide for initiating a method whereby flash point testing can be a useful tool in determining dilution of a flammable liquid by another flammable liquid. ## E. Parts List | CG-04480-000 | | 1 amp, 230v Fuse | | | |---------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | CG-04480-002 | | 2 amp, 120v Fuse | | | | RT-05012A | | Silicone Gas Tubing (bulk / ft) | | | | | RT-05013 | Heat Transfer Compound | | | | | RT-05500 | Metal Cooling Block | | | | | RT-05505 | Refrigerant Charged Cooling Block for Sub-Ambient Testing | | | | | RT-05520 | Syringe 2ml / 4ml | | | | | RT-05531
RT-05532
RT-05533
RT-05534
RT-05536
RT-05537 | 32 to 230°F
212 to 572°F
0 to 110°C
100 to 300°C
-36 to 105°F
-38 to 40°C | Thermometer, minimum graduation 1°F Thermometer, minimum graduation 2°F Thermometer, minimum graduation 1°C Thermometer, minimum graduation 2°C Thermometer, minimum graduation 1°F Thermometer, minimum graduation 1°C | | | | RT-14880-600 | Lid & Shutter Assembly, 316 Stainless Steel | | | | | RT-15606 | Electronic Circuit Board Assembly | | | | | RT-14857 | Fuel Cylinder, Butane | | | | RT-14858-600 | | 316 Stainless Steel Cup | | | | RT-14861 | | Primary Power Cord, USA Type | | | | RT-14865 | | Heater Cartridge, 50 watt
(must be replaced in pairs) | | | | RT-14876 | | Hold Down Bracket, Thermometer | | | | RT-14880 | | Lid & Shutter Assembly | | | | RT-14980 32 to 572°F / 0 to 300°C Dual Scale minimum gradations 5°F (2°C) | | | | | | RT-14983 | | Gasket | | | | RT-14986 | | Valve Assembly | | | | RT-15035 | | Thermocouple Assembly | | | | | | | | | ## Warranty For a period of twelve (12) months from the date of shipment, and under normal conditions of use and service, ERDCO ("The Company") will at its option replace, repair or refund the purchase price for any of its manufactured products found, upon return to the Company (transportation charges prepaid and otherwise in accordance with the return procedures established by the Company), to be defective in material or workmanship. This policy shall not apply if the product has been subjected to alteration, misuse, accident, neglect or improper application, installation, or operation. Any Buyer of goods or services from the Company agrees with the Company that the sole and exclusive remedies for breach of any warranty concerning the goods or services shall be for the Company, at its option, to repair or replace the goods or services or refund the purchase price. The Company shall in no event be liable for any consequential or incidental damages even if the Company fails in any attempt to remedy defects in the goods or services, but in such case the Buyer shall be entitled to no more than a refund of all monies paid to the Company by the Buyer for purchase of the goods or services. Any cause of action for breach of any warranty shall be commenced by the Buyer no later than twelve months from date of instrument shipment from ERDCO. If this product requires service, call ERDCO at 847-328-0550 for a return authorization. Pack instrument in a sturdy carton and ship prepaid to: ERDCO Engineering Corporation, 721 Custer Ave., Evanston, IL 60202 USA. Attention: Service Department. Include: Description of problem Name of person to contact Purchase order number Return shipping instructions